产品中心/ PRODUCTS

我的位置:首页  >  产品中心  >  一体化污水处理设备  >  一体化废水处理设备  >  连云港废水处理设备联系电话点击咨询详情

连云港废水处理设备联系电话点击咨询详情

  • 产品型号:
  • 更新时间:2024-05-07

简要描述:连云港废水处理设备联系电话点击咨询详情建立在此的条件下,从液相释出并随气相向塔顶上升。在这个上升的过程中,实现了气相与冷进料之间的接触,在这个接触的过程中由于酸性气体的挥发度相对比NH3要高,使得大部分的酸性气体在塔顶的位置被排出,只有少量的酸性气与NH3之间反应并重新被吸收进而到液相,并在塔体中部位置形成了高浓区,并以侧线采出的形式进入到三级分凝系统之中,这种降温降压的形式经过3次循环之后,进而

产品详情

连云港废水处理设备联系电话点击咨询详情

在煤化工技术之中煤气化属于核心技术,是实施煤炭深加工工艺的重要基础环节,比如煤制的甲醇、油、天然气等等。在煤气化加工工艺中碎煤固定床加压气化工艺的相关技术已经较为成熟,该技术在使用中对于煤种的适应范围也较广,对于氧的消耗量也较少,在产出的气体中甲烷的含量也较高,由于这种工艺具有这些优点,所以被城市煤气、煤制天然气等生产领域广泛的运用。但是势必会产生大量高浓度的煤气化废水,通过业内深入的研究提出了单塔加压脱酸脱氨装置来对煤气化废水实施处理,并在工业项目当中的酚氨回收装置之中已经实现了工业化,所获得的运行效果十分良好。

  1、单塔加压脱酸脱氨工艺的具体流程

  单塔加压脱酸脱氨这种工艺在具体实施的过程中,实质上就是将两种提塔在44个塔内进行重叠,这两种提塔分别为氨汽提塔、酸性气汽提塔,该装置主要分为两个部分,分别为脱酸脱氨塔与三级分凝系统。经过预处理之后的煤气化废水会被分成两股,一股废水经过冷却器冷却之后,作为处理流程中的冷进料在塔顶位置进入装置之中,另一股废水经过换热之后,作为废水处理流程中的热进料在塔体的中部位置进入到装置之中,而塔釜则通过再沸器进行间接加热或者直接通过蒸汽来进行加热。在塔釜中以酸性气体(比如CO2、H2S)为主与NH3实施加热,建立在此的条件下,从液相释出并随气相向塔顶上升。在这个上升的过程中,实现了气相与冷进料之间的接触,在这个接触的过程中由于酸性气体的挥发度相对比NH3要高,使得大部分的酸性气体在塔顶的位置被排出,只有少量的酸性气与NH3之间反应并重新被吸收进而到液相,并在塔体中部位置形成了高浓区,并以侧线采出的形式进入到三级分凝系统之中,这种降温降压的形式经过3次循环之后,进而获得纯度较高的氨气。

煤气化废水入水的水质当中,有90%的质量为游离氨,因此,通过AspenPlus模拟计算模式实施计算的过程中,忽略了固定氨在其中占有的份额,采用游离氨的模式来代替总氨实施相应的模拟。与此同时,将脱酸脱氨之后的出水指标中各个物质的浓度进行设置,其中NH4+的质量浓度设置为≤30mg/L,CO2与H2S等酸性气体质量的浓度都设置为≤200mg/L。

  3、脱酸脱氨回收装置操作相关参数的优化分析

  3.1 脱酸脱氨塔操作压力的优化

  脱酸脱氨塔在实际开展运行的过程中,将操作的压力作为变量,而其他参数在不发生变化的情况下,分别对操作压力为0.3MPa、0.4MPa、0.5MPa和0.7MPa时的参数分别进行考查,脱酸脱氨塔的塔釜液组成与塔能耗产生的变化趋势。其中需要注意的是,当操作压力参数为0.3MPa与0.4MPa时,压力已小于三级冷凝的操作压力0.36MPa,在这个时候需要对与其相配套的三级冷凝操作参数实施相应的修改。随着装置在操作过程中的操作压力不断升高,塔釜的温度也会逐渐随之升高,相对NH4+的含量则随之逐渐降低,这主要是由于在温度升高的情况下,更加有利于离子氨实施相应的分解与脱除,所以逐渐升高操作压力对于脱酸脱氨塔的分离效率而言是非常有利的。

  3.2 操作流程中冷进料与总进料的比

  当冷进料在总进料中所占比例作为变量的时候,同时其他参数也不变的情况下,分别对冷进料所占比为0.10、0.20、0.25、0.30和0.40参数时分别进行考查,脱酸脱氨塔的塔顶位置酸性气体中NH3的含量以及塔能耗的变化趋势,其结果为随着冷进料的不断增加NH3不断减少,当冷进料占总进料比为0.20时,NH3的减少程度逐渐减缓。在实施设计与工业生产的过程中,应该对于塔顶酸性气体中氨含量进行最大可能的降低,这样在后续设备与管道之中极大程度上降低碳铵结晶形成的几率,进而将排除的冷进料占总进料比为0.10。当冷进料的占比逐渐增大的过程中,其范围是由0.20至0.40之间,酸性气体中氨所占的比例为100×10-6以下,并且其变化的趋势逐渐减缓,在冷进料所占比例逐渐增大的同时,塔内的能量消耗也逐渐增大。所以,应该对装置能耗进行综合性考虑,需要能够根据废水入水的实际情况,对冷进料的占比实施有效控制,使其保持在0.20~0.30之间。

煤化工来水水质COD为(90~150)mg/L,电导率为(3800~5300)us/cm,硬度为(800~1140)mg/L,通过投加石灰、碳酸钠、混凝剂及助凝剂在废水微涡流沉淀池中降低硬度、SS及浊度等指标后自流入原水纤维滤池,通过纤维滤池进一步降低浊度,经过自清洗过滤器截留微细颗粒物质,避免超滤膜被大颗粒物质堵塞或划伤;通过废水超滤膜,去除SS、胶体及大部分细菌后产水汇集至反渗透。微涡流沉淀池、生化处理系统产生的污泥经收集后由泵输送至污泥板框脱水机进行处理,泥饼外运处理。一级膜脱盐产水符合生产装置区回用水要求,回用给附近的化工生产装置再利用。

  一级膜脱盐浓水进入二级膜脱盐处理,再进入纳滤系统进行分盐处理,纳滤产水进入浓水反渗透系统进行浓缩与脱盐处理,将浓盐水浓缩5倍以上,设置除硅系统去除二氧化硅,再进入高压反渗透继续进行浓缩与脱盐处理,高压反渗透浓水进入MVR系统进行蒸发浓缩,后经强制循环氯化钠蒸发结晶系统产出氯化钠。纳滤浓水进入高压反渗透系统进行浓缩与脱盐处理,并采用“冷冻结晶+熔融结晶+MVR强制循环结晶"产出硫酸钠。氯化钠蒸发结晶母液和部分纳滤浓水一并进入杂盐蒸发结晶器产出杂盐。

  2、仪表选型

  污水处理中常见的自动化仪表分两大类:热工仪表、成分分析仪表。随着自动化仪表处理技术的发展,越来越多的在线分析仪表应用在污水处理中,甚至参与加药自动控制,在设计中要考虑到取样和分析的代表性,确保分析仪运行正常、稳定的运行状态,只有这样,才能保证污水处理装置稳定运行。

  所以,在污水处理中对自动化仪表设计和选型时,应遵循以下原则:

 

连云港废水处理设备联系电话点击咨询详情


 ①尽量选取可以稳定运行、方便维护、智能操作且具有较高测量精度的仪表,进而减少仪表管理的运行和难度;

  ②除了考虑是否可以稳定运行,还要考虑操作起来是否容易,以及是否经济、节能,成本和性价比较高,以降低污水处理的成本;

  ③因污水处理的水质环境较恶劣,不仅在露天进行测量,还常常在井下和污水中进行测量,对仪表的要求非常严格,所以在选型时要结合运行环境进行挑选,保证在测量环境中仪表发生故障的可能性较低;

  ④在特殊环境下还要考虑自动化仪表的特殊功能。如在爆炸区域要选择防爆仪表,避免因仪表选型造成经济损失。

  下面,从热工仪表和分析仪表两方面,结合某污水处理项目实际选型进行具体说明。

  2.1 热工仪表

  液位计选用超声波或雷达液位计测量水池、污泥池液位,选用压力变送器测量水罐液位;流量考虑到污水电导率较高,且含有泥沙等杂质,选用电磁流量计测量泵出口流量;污水处理压力较小,选用压力变送器测量压力;水处理温度一般在0~50℃,采用热电阻配温度变送器进行测量。

  2.2 分析仪表

  污水处理中水质指标是关键的工艺指标,为保证分析仪的精度和稳定性,选型时应从以下几方面考虑:

  ①选取精度高、稳定性好、安装简单的分析仪;

  ②要注意分析仪是否能适应当地的气候环境,尤其极寒、极热地区;

  ③要考虑水质条件,在易结垢的水质中要考虑使用带自清洗功能的分析仪,或在安装时增加清洗装置;

  ④选取备件、试剂好采购的国内外分析仪可大大降低在线分析仪的维护难度。

  3、控制系统配置及结构图

  空压站、污泥处理、冷冻机组、脱水机利用PLC实现就地控制,其余数据采集和控制由DCS实现,就地PLC通过MODBUS与DCS系统连接。因项目分二个阶段实施,总IO点有13000点,其中膜脱盐段约5500点,分支分盐段约7500点,网络拓扑结构采用总线型,选择支持PROFIBUS、MODBUS、OPC等多种方式与第三方通讯。采用对等的网络结构,过程控制网直接连接了系统的控制站和操作站节点,采用双重化冗余设计。同时可连接系统内的任何操作节点、包括操作员站、工程师站等,还可实现管理信息网的连接,系统内的每个工程师站节点,均可以通过组态文件网络传输和共享发布的方法,进行系统组态、编译、下载等操作。

  众多国内外参考资料证实,DT膜柱被成功使用在被专家称为废水处理中的“最糟情况"的废水处理领域中。因此本项目选用DTRO膜工艺处理本电解液废水。

  3、项目运行情况

  3.1 项目实施说明

  (1)废水首先通过DTRO进水泵提升压力,后面设置保安过滤器,防止大颗粒杂质进入膜内;

  (2)在管路中投加阻垢剂,加酸,防止高价态离子的高倍浓缩而结垢;

  (3)然后通过高压泵进一步提升压力,满足反渗透的过滤要求;

  (4)加压后进入DTRO装置进行浓缩,产水回用于车间;

  (5)DTRO浓液至浓水箱,浓水交由相关资质单位处理;

  (6)DTRO系统设计膜通量10.64lmh,设计运行最大压力80bar,回收率约66.7%;采用DFM品牌DTGE-HP9405型膜组件,膜数量为2支,单支膜面积9.405㎡;

  (7)DTRO系统设置一套冲洗和清洗系统。

  3.2 运行效果

  本电解液项目深度处理及浓缩处理单元一期于2017年9月投入试运行,废水进水TDS质量浓度在2000~3500mg/L波动,处理能力为20m3/d,产水回收率≥95%,产水水量控制为1m3/h,出水稳定达到《地表水环境质量标准》IV类标准。浓水产水量小于100L/d,进入后继蒸发系统蒸发。本系统运行稳定。

  3.3 膜清洗再生方案

  在废水运行过程中膜受到有机物、盐分结垢等物质污染,在平时运行中,先对膜组件进行物理反洗,可以暂时恢复部分膜通量。若产水反洗效果变差,则需判断污染状况,根据污染物的类别进行化学清洗。

  本项目的污染主要是金属氢氧化物产水结构,在运行过程中,分别选用酸洗和碱洗对膜进行清洗,具体结果见表4,通过化学清洗,膜通量得到了有效恢复,酸洗通量由16L/(㎡.h)恢复到35.6L/(㎡.h),碱洗通量可恢复到37.5L/(㎡.h),可见对于本项目,酸性清洗的效果要优于碱性清洗。


在线咨询

留言框

  • 产品:

  • 您的单位:

  • 您的姓名:

  • 联系电话:

  • 常用邮箱:

  • 省份:

  • 详细地址:

  • 补充说明:

  • 验证码:

    请输入计算结果(填写阿拉伯数字),如:三加四=7
版权所有©2024 常州天环净化设备有限公司 All Rights Reserved   
备案号:   sitemap.xml
技术支持:   

扫码关注我们