产品中心/ PRODUCTS

我的位置:首页  >  产品中心  >  一体化污水处理设备  >  一体化废水处理设备  >  南通集装箱一体化污水处理设备专业靠谱

南通集装箱一体化污水处理设备专业靠谱

  • 产品型号:
  • 更新时间:2024-03-27

简要描述:南通集装箱一体化污水处理设备专业靠谱通过化学沉淀回收P的一个主要缺点是沉淀剂中金属离子、污水中的重金属离子、有机物、病原体或病毒等可能会与磷共沉淀到含磷化学污泥中。这限制了最终的含磷化学污泥作为肥料的直接利用以及作为磷产品的回收利用。如高浓度的铝对酸性土壤中的植物有毒害作用,另外,以Al-P和Fe-P形式存在的P固体稳定性较高,不容易溶解后以离子的形态被植物利用。

产品详情

南通集装箱一体化污水处理设备专业靠谱

随着工业化步伐的加快、人口的增长和水污染问题的严重,使原本十分有限的淡水资源更加稀缺,我国多个大中城市中有半数以上缺水尚有的城市没有污水处理厂,大量生活污水直接排放,造成越来越严重的环境污染问题。解决水环境污染问题迫在眉睫。

目前,我国污水处理厂的二级处理率仍然很低,而且污水处理大部分仍然局限在有机物和悬浮固体的去除。虽然近年来,我国已经开展了脱氮除磷方面的研究,并且取得了一定的进展。但是近十多年来,我国污水处理厂的工艺升富营养化问题不但没有解决,反而还在加重。水体富营养化是指湖泊、河流、水库等水体中氮磷等植物性营养物质含量过多所引起的水质污染现象。由于水体中氮磷等营养物质的富集,引起藻类及其他浮游生物的迅速繁殖,使水体溶解氧含量下降,造成藻类、浮游生物、植物、水生物和鱼类衰亡甚至绝迹的污染现象。二级出水中氮磷等营养物的过多排放引起的水体富营养化问题仍然是我国面临的最主要的水污染问题之一。

污水生物处理过程的脱氮技术是上个世纪年代才开始逐渐发展并应用于工程实践中。磷可以通过生物法去除,同时也可以通过化学法去除,通过投加药剂生成含磷污泥沉淀排出系统。由于含氮的化合物一般都是分子态,分子量较小,目前生物法去除是经济可取的方法。

但是目前的实际情况是,我国污水处理厂仍然普遍存在技术人员缺乏,运行管理水平较低等问题,所以积极探索适合我国国情,在投入较少的情况下,获得更好的处理效果,降低运行成本,对于发展我国的污水处理事业显得尤为重要。随着我国《城镇污水处理厂污染物排放标准一》的颁布实行,对于我国城镇污水处理厂的氮磷排放提出了更高的要求。实现对于已建成城镇污水处理厂的脱氮除磷改造突出的摆在我们面前。

氧化沟工艺由于其运行稳定,管理方便等优点在国内污水处理厂,尤其是许多城市污水处理厂中得到了广泛的应用。针对氧化沟工艺的降耗运行和脱氮改造将对于提高我国的污水处理技术水平,提高运行管理具有重要的理论意义和实践价值。

同时,随着经济社会的不断发展和人民生活水平的不断提高,城市污水厂的进水水质也发生了显著的变化,目前许多城市污水处理厂都面临着进水碳氮比较低,反硝化过程探源不足的问题。如何优化低碳氮比污水的脱氮处理工艺,降低处理费用也成为目前研究的热点问题之一。

2、国内外研究现状和发展趋势

自世纪年代起,世界各国开始普遍研究利用生物法去除污水中氮和磷等植物性营养盐的工作。年国际水污染控制和研究协会在丹麦哥本哈根举行了第一次关于氮磷去除的国际会议,这是污水除磷脱氮技术研究和工程应用取得重大进展的标志。进入世纪年代,欧洲各国都制定了各自的法律法规,对于排放的二级出水中的氮、磷等植物性营养物质都提出了明确的要求。我国也先后颁布了如《污水综合排放标准一》以及《城镇污水处理厂污染物排放标准一》,对于城镇污水厂排放的污水中氮、磷等提出了更高的要求。在传统的顺序硝化一反硝化工艺的基础上,目前又开发了许多新的脱氮工艺,如同时硝化反硝化,短程硝化反硝化以及厌氧氨氧化等。

2.1 传统生物脱氮工艺

对于污水处理进行硝化过程主要基于以下几点考虑氨氮对于水生动物的毒性和对于水中溶解氧的消耗控制水体富营养化,进行脱氮的需要以及水资源的回用,包括地下水回灌等的需要。生物脱氮过程一般都包括两部分好氧区,使硝化能够发生缺氧区在空间或者时间存在,使通过氨氮氧化形成的亚硝酸盐及硝酸盐还原实现总氮去除成为可能。亚硝酸盐或者硝酸盐的还原需要电子供体,而反硝化过程的电子供体通常有以下三种来源进水中可以生物降解的有机物、活性污泥的内源碳源和外投加碳源。而反硝化过程碳源不足则会导致污水脱氮不。

2.2 传统脱氮工艺

为了防止水体富营养化问题,当向敏感水体中排放污水时,通常都需要考虑脱氮。脱氮既可以是一个生物处理系统的一部分,也可以是已建污水处理厂的扩建改造部分。对于悬浮生长的生物脱氮系统,可以分为单污泥系统和双污泥系统。单污泥意味着系统中只有一个污泥分离装置通常为二沉池。活性污泥反应器可能被分成不同的实现缺氧或者好氧环境,通常设置混合液内回流。双污泥系统通常由硝化和反硝化两个单元构成,各自都有单独的污泥分离系统。单污泥系统在实际中比较常用。


磷(P)作为所有生命必须的营养元素,在我们的生态环境及人类活动中扮演不可替代的作用。但是,磷的广泛使用也给我们的环境带了一定的问题,如磷矿石的开采,磷肥的使用以及磷添加剂的使用,导致河流、湖泊等水体中磷含量增加,引起水体富营养化问题。为保证水生态环境的安全,各个国家都针对磷元素制定了严格的污水中磷的排放标准,严格限制磷的排放阈值。同时,磷矿资源也是一资源,目前磷矿产业仍在扩张,对磷的需求量仍在增加,欧盟委员会于2014年宣布磷矿石是一种关键的原材料,有预测称可开采的磷矿储量在100年内可能变为短缺资源。故开发磷的回收和再利用技术的正成为越来越迫切的环境、经济和社会问题。

基于污水中相对较高的磷负荷,污水处理厂(Wastewater Treatment Plant,WWTP)是一个很大的磷资源库,污水处理厂为磷的回收提供了可能,从其中来获取磷资源,污水处理厂便可替代部分的磷矿开采。这样一方面可促进磷资源的循环经济发展,同时也减少了磷对环境的污染。近年来各国学者都在深入研究和开发从污水中回收磷的技术。本文回顾了当前在污水处理厂工艺中使用的磷去除技术化学沉淀,强化生物除磷技术(EBPR)和从各种污泥处理技术中回收磷的技术。

1、磷在污水处理中的存在形态

1.1 污水处理过程中磷的存在形态

城市污水中的磷浓度一般低于10mgP/L,P在污水中以溶解态和颗粒形式存在,针对不同的P形态所采用的处理工艺也会有所不同。其中以颗粒物形式存在的磷更容易通过沉淀作用得到去除,而溶解态的无机磷和有机磷则需要更有针对性的化学或生物学过程来去除。Petzet和Cornel报道称,污水处理厂的进水总磷中有17%-26%的磷是以颗粒形式存在的,这部分磷主要在初沉池进行去除。在污水二级处理过程中,污水中的溶解性磷主要通过生物作用去除和(或)添加化学药剂进行沉淀去除。通常经一级和二级处理后,出水中的磷浓度仍达不到排放标准,在常规的二级处理工艺中(活性污泥法),进水中约31%-48%的磷被转移到污泥中。结合一级处理中去除的磷,总共去除的磷占进水磷负荷的50%左右,这就表明,后续还需采用强化除磷技术来实现剩余的50%的磷的去除。专门用于从污水中去除磷的技术可以按操作分类为化学、生物或物理法。其中应用比较广泛的为化学沉淀技术和强化生物除磷(EBPR)技术。这两种技术都是基于将各种溶解态的磷形式转化成固体形态来进行去除。

1.2 化学法去除污水中的磷

通常化学法除磷主要是通过添加Fe、Al或Ca的二价或三价金属盐与P生成沉淀物来进行去除。污水中磷的形态主要分为以溶解态存在的HPO42-、H2PO4-或H3PO4(这几种形式的存在主要取决于污水的pH值)以及有机P和颗粒形态的P,它们主要通过投加絮凝剂以形成金属磷酸盐污泥,经絮凝和沉淀作用去除。当溶液中磷浓度较高时,化学沉淀除磷用于处理的初始阶段会更高效。铁和铝盐被认为是最合适的,这两类盐通常以氯化物或硫酸盐的形式投加,也可以使用钙盐,一般以石灰(Ca(OH)2)形式加入。通常从经济上考虑会优选Fe盐作为沉淀剂。

另外,当前比较新兴的一项技术是采用高铁酸钾用于P沉淀和污水消毒。高铁酸钾最早是用作强氧化剂,而Fe-P的沉淀反应是通过Fe(VI)的还原而发生。高铁酸钾的消毒速率比相同浓度的氯更快。在二级出水中磷浓度为1.46mgP/L的情况下,投加5-25mgFe/L的高铁酸盐,即能够去除80%以上的磷。由于化学沉除磷具有需要投加化学药剂造成成本增加,以及产生的大量不可资源化利用的含磷化学污泥,使其应用具有一定的局限性。目前很多研究也在考察采用工农业废料作为潜在的磷沉淀剂。红泥是一种丰富的采矿废弃物,由于其含有大量的铝和铁,因此目前已开展了关于其潜在的沉淀磷的能力的研究。Poulin等人研究发现红泥对P的去除率与商业沉淀剂相似,红泥可对磷浓度范围在5-100mgP/L的溶液中的P去除率可达到70%-98%。另外,粉煤灰也被用作磷沉淀剂,其对磷的去除率约为6mgP/g。

南通集装箱一体化污水处理设备专业靠谱


1.3 强化生物除磷(EBPR)EBPR

是在20世纪70年代开发的生物除磷技术,如今已得到全球各地污水处理厂的广泛使用。目前大多数的磷回收技术都需要采用EBPR工艺预先积聚P(作为含磷生物污泥)。EBPR依赖于聚磷菌(PAOs)或反硝化聚磷菌(DPAOs),以聚磷酸盐颗粒的形式在细胞内聚集P,因此避免了化学除磷所需要的一些反应条件。EBPR工艺通过交替的厌氧和好氧条件实现;PAOs在厌氧阶段吸收污水中的挥发性脂肪酸,将其储存为聚羟基链烷酸酯,随后在好氧阶段进行分解代谢,释放能量,以满足PAOs将污水中的磷积聚在体内合成多聚磷酸盐时所需的能量,然后含磷的微生物作为剩余污泥排出处理系统,实现磷从系统中的去除。高富含PAO的污泥可以积累的P占污泥干重的20%左右,而非PAO富集污泥中的P含量占污泥干重的1%-2%。细菌不动杆菌属最早被认为是EBPR系统中的聚磷菌,但目的是污水处理厂的磷去除主要是由放线菌属Tetrasphaera和细菌β-变形杆菌属中的Candidatus Accumulibacter Phosphatis完成的。

在实际污水处理厂中,EBPR工艺通常可以去除城市污水进水中85%以上的磷,出水的磷浓度通常低于0.1mgP/L。但是EBPR系统的稳定性总是会受到一些环境条件的影响。其中EBPR系统的运行失败的最大原因之一是由于聚糖菌(GAOs)的竞争作用。GAOs也需要在厌氧/好氧交替的环境下生长,故其在EBPR系统中可得到积累,但GAOs可与PAOs竞争碳源底物,却不具有在好氧条件下吸收磷的作用,从而导致PAOs聚磷效果受到影响。因此,为保持EBPR系统的稳定运行,需要调控系统的运行条件以抑制GAOs在系统的生长。研究表明,在pH8时,GAO的活性会受到限制,而PAOs的活性处于良好的状态;研究发现较低的温度有利于PAO生长,与20℃相比,高温30℃可促使GAO生长;低溶解氧也有利于PAOs的生长。此外,碳源类型及其浓度对EBPR系统的稳定运行也极为重要;例如研究发现丙酸盐比乙酸盐底物更有利于PAOs的生长。而进水中有毒物质如Cr(VI)(≥0.5mg/L)的存在则会对PAOs产生毒性,从而抑制系统对磷的去除。富含磷的生物污泥可以直接作为肥料使用,不过这需要取决于污泥中重金属、致病菌等污染物的存在情况。

与化学工艺相比,EBPR工艺被认为是更具经济性和环境友好性。EBPR需要的化学添加较少或不需要化学添加,并且具有回收P的潜力。这些含磷生物污泥可通过进一步的处理,生成诸如鸟粪石(MgNH4PO4•6H2O)形式的磷进行回收。然而,在EBPR除磷效率低和(或)立法要求污水排放中的P浓度保持在较低的水平的情况下,大型污水处理厂也常常使用化学除磷和EBPR除磷相结合的工艺,以确保达到排放要求。这就减少了通过生物磷污泥消化后回收磷或作为肥料直接施用的再利用磷量。

2、污水处理中磷的回收利用

通过化学沉淀回收P的一个主要缺点是沉淀剂中金属离子、污水中的重金属离子、有机物、病原体或病毒等可能会与磷共沉淀到含磷化学污泥中。这限制了最终的含磷化学污泥作为肥料的直接利用以及作为磷产品的回收利用。如高浓度的铝对酸性土壤中的植物有毒害作用,另外,以Al-P和Fe-P形式存在的P固体稳定性较高,不容易溶解后以离子的形态被植物利用。

生物除磷后的含磷生物污泥也可以直接作为肥料使用,虽然有研究发现脱水后的生物磷污泥的肥效与矿物肥料一样有效,但也存在化学和生物污染物转移到食物中影响健康的问题。已有研究表明,生物污泥施用于土壤虽然增加了土壤中有效的营养成分,但也增加了土壤和植物中的重金属浓度。在印度生物污泥施用量为高于20t/ha时,稻谷中的镉浓度高于印度农业所规定的安全限值。瑞士已经禁止在农业中直接使用生物污泥。直接使用污水厂处理后的剩余污泥的其他问题包括运输和应用的困难,因为污泥体积庞大、含水量高。污泥脱水可以减少运输成本,消除专业农场设备的必要性,但会产生能源和经济成本。这就需要通过其他技术处理生物污泥以从污水中获得更纯净和更有效形式的磷。

2.1 污泥厌氧消化和脱水

厌氧消化(Anaerobic Digestion,AD)是的污泥稳定化的技术,它可实现分解有机固体物和病原体并以甲烷的形式进行能量回收。生物磷污泥经厌氧消化后产生的消化液浓度比污水厂进水高约10倍-50倍。经消化后污泥中的大部分重金属仍保留在消化后的污泥中,而污泥中的磷经生物降解后释放到消化液中。据估计,生物污泥中约30%的总磷被释放到消化液中,而在化学污泥经消化后,大约只有不足10%的P释放到溶液相中。这是由于溶液中Fe、Al、Ca和Mg的沉淀作用或污泥的吸附作用将P重新固定到污泥相中。目前商业中的磷回收技术主要是通过含磷生物污泥的厌氧消化以促进磷的溶解释放从而生成鸟粪石来进行的,例如NuReSys®,Pearl®,Phosnix®和PHOSPAQ™Schoumans技术等。但在厌氧消化液中存在的新型有机污染物转移到回收P的产品如鸟粪石中也是值得关注和进一步研究的问题。已有研究发现在厌氧消化过程中,大多数的新型污染物是不会被AD过程降解的,消化液中存在的新型污染物,例如的主要代谢产物抗抑郁和苯甲酰,它们会优先被吸附并积聚在回收的磷固体物质内,从而污染回收的磷产品。


在线咨询

留言框

  • 产品:

  • 您的单位:

  • 您的姓名:

  • 联系电话:

  • 常用邮箱:

  • 省份:

  • 详细地址:

  • 补充说明:

  • 验证码:

    请输入计算结果(填写阿拉伯数字),如:三加四=7
版权所有©2024 常州天环净化设备有限公司 All Rights Reserved   
备案号:   sitemap.xml
技术支持:   

扫码关注我们