公司产品系列
Product range咨询热线:
014-77558505Articles
简要描述:宿迁实验室一体化污水处理设备免费咨询工艺高盐废水的成分复杂、污染物较多,若不经处理直接排放,对人体健康及周围环境将造成极大危害。目前,处理处理高盐废水的主要方法有院电化学、膜分离技术、蒸发法及离子交换技术、生物法以及不同耦合技术。电渗析耦合反渗透(ED-RO)技术在占地、投资和能耗等方面具有巨大优势,将其用于对高盐废水的处理,符合当前化工企业实现野清洁生产冶的需求。
宿迁实验室一体化污水处理设备免费咨询工艺与二级电渗析相比,一级电渗析处理难度较低,因此重点分析二级电渗析出水水质。由图2可知,随着电压的升高,二级电渗析浓缩液含盐量和硬度逐渐增高,脱盐水含盐量逐渐降低。这主要是因为随着电压升高,电场力增加,离子迁移速率提高,浓缩液含盐量逐渐上升,但随着电压升高,浓缩液含盐量的增幅逐渐减低,原因主要有三院一是随着电压的升高,稳定电流逐渐升高,各室的产热反应上升;二是随着浓缩液和脱盐水含盐量差逐渐加大,ED膜的渗透压逐渐升高,电场力需要克服的阻力提高,电迁移效果减弱;三是随着ED膜两侧的渗透压差增大,存在部分水迁移至浓室现象。单价离子膜对于二价离子无法实现留,导致二级浓缩液中钙镁含量(相应提高。综合考虑,当电压达到50V时,为最佳实验操作条件,二级电渗析浓室盐质量浓度达到185.32g/L,钙、镁质量浓度分别为74.87、4.2μg/L,悬浮物质量浓度为0.73mg/L,通过补加氯化钠,达到企业一级精制盐水标准,可用于氯碱工业;一级电渗析淡水盐质量浓度为24.8g/L。
随着环境保护力度的加大,燃煤电厂在发电的过程中也在探究新的废水处理及利用方式,以达到脱硫废水达标排放的效果。燃煤电厂在进行脱硫脱硝生产过程中,会产生一定的脱硫废水,其中含有一定的重金属等污染物质,需要经过废水处理之后才能进行排放,以此来降低对周围环境造成的污染,并满足生态环保要求。由此,探究燃煤电厂脱硫脱硝废水处理及综合利用的相关内容就成为燃煤电厂需要研究的技术要点。下面展开具体的废水处理方法和综合利用内容分析。
1、燃煤电厂脱硫脱硝废水产生及处理方法分析
据有关调查显示,我国大多数燃煤电厂在生产过程中都会利用脱硫脱硝法来生产,这就导致了脱硫脱硝废水的产生。然而,在实践中脱硫废水的处理并不简单,其成分、浓度等因素也将影响到燃煤电厂废水处理系统的运行情况,并直接关系到设备的选用以及腐蚀等状况。下面对燃煤电厂脱硫脱硝废水的水质特性以及处理方法展开分析。
1.1 废水特性
结合燃煤电厂脱硫脱硝废水产生的过程,脱硫废水都呈现出一定的弱酸性,并且具有较高含量的悬浮物,在质量浓度系数上也较高。同时,脱硫废水还含有部分重金属污染物和I类污染物,是废水排放处理的重要监控对象。此外,脱硫废水的盐分含量较高,并且还有一定带负电荷且质量分数为0.04的氯离子等离子。
1.2 影响因素
调查显示,在燃煤电厂生产中影响脱硫脱硝废水水质的因素大致包括了燃煤和石灰石的品质、脱硫系统的利用、污染物的控制和脱水设备的应用等。
(1)燃煤作为产生脱硫污染物的主要基础,不同种类的煤也会随之影响到脱硫废水的产生量,一些含硫量较高的煤燃烧也会产生更多量的二氧化硫气体,从而造成脱硫剂的使用量增加,也就导致了脱硫废水排放量的增多。而一些氯元素含量较高的煤燃烧,则会造成烟气中的氯含量增加,从而使得脱硫浆液中的含氯量增多,从而对脱硫系统的腐蚀性增强。而为了防止脱硫系统较强的腐蚀性,就需要通过排除脱硫浆液来控制脱硫浆液氯离子浓度,这将会造成脱硫废水的排放量也相应增加。
(2)石灰石的品质对于脱硫脱硝废水水质的影响,主要表现在石灰石当中会存在一些其他的黏土杂质、惰性细颗粒、硅或者铝等物质,这就都将造成在脱硫脱硝废水当中含有一些锌元素或者镍元素。
(3)脱硫系统的应用对脱硫脱硝废水水质的影响,是通过对不同添加剂的应用、氧化方式的选择以及氧化程度的控制来区分。在脱硫系统当中利用一些酸性添加剂将造成废水中的BOD5贡献率增加,通过强制氧化或者充分氧化则会造成废水中存在硒酸盐成分,从而需要利用铁共沉淀来去除硒元素的毒性,甚至还需要通过生物处理来去除部分的硒元素。
传统处理技术可以有效去除废水中的大部分金属物质以及一些悬浮物,但却无法应对一些可溶性的盐分如氯离子和重金属物质如硒离子等,该技术的应用主要分为两个方面。
(1)通过沉降池来实现,在沉降池当中,利用重力使得废水中颗粒物沉淀到池底。由此可见,沉降池的利用一方面需要保障废水在沉降池中停留相当长的时间,这样才能保障悬浮颗粒物去除。但是,这仍然不能解决废水中存在的一些金属盐类溶解物,尚不能达到天然排放的要求。
宿迁实验室一体化污水处理设备免费咨询工艺(2)通过化学沉淀来实现,化学沉淀通过废水中和、重金属沉淀、絮凝以及澄清等四个步骤来完成对于废水的处理。在废水中和当中,是在脱硫废水中加入一定的石灰浆液,从而保障废水的酸碱值维持在9.0左右,将金属离子形成难以溶解的氢氧化物。在重金属沉淀中,则是加入有机硫化试剂与废水中的金属元素反应,从而形成难以溶解并沉在池底的硫化物。在絮凝环节,则是加入适量的絮凝剂使得废水中的颗粒和胶体物质可以凝绝成颗粒物沉入池底。在最后的澄清环节,则是将沉积在池底的絮凝物等在重力的作用下浓缩成污泥,实现净水与污泥的分开处理。
1.3.2 深度处理技术
深度处理技术可以分为生物处理以及混合零价铁处理两种,具体技术要点如下:
(1)生物处理是对燃煤电厂脱硫脱硝废水进行微生物处理的方式,将一些可溶有机污染物或者不可溶的污染物进行生物降解,从而使其转化为絮状物。对废水中污染物的生物去除可以通过构建有氧、无氧或者缺氧段环境的方式,实现对金属或者营养盐的去除。在去除过程中,微生物通过发挥呼吸作用将硒酸盐盐还原为硒元素,并吸附在微生物细胞的表面。由此可见,生物处理可以实现对废水中硒重金属元素的处理,但是在处理过程中很容易形成有毒的有机硒、有机汞等,发生二次污染。
(2)混合零价铁技术可以有效实现对硒酸盐、盐含量的降低,但是在铁反应的过程中很容易在铁表面发生钝化,从而限制零价铁的反应活性。目前,通过将正二价铁引入零价铁处理的实验研究结果发现,其可以在提高反应活性的同时,去除废水中的汞物质,具有较高的应用价值。
1.3.3 技术
技术包括了飞灰混合、蒸发池以及烟道蒸发等三种方式,具体步骤如下:
(1)在飞灰混合当中,用脱硫废水对废水增湿,并在运输的过程中控制粉尘,减少扬尘情况。但如果将电厂中的飞灰拓展到商用,则会受限于氯离子含量而影响其使用范围。
(2)蒸发池的应用比较适用于一些干旱或者半干旱地区,其借助自然蒸发手段来减少废水的体积,并通过控制废水数量的大小来提高蒸发效率。但是,在蒸发利用当中,需要注意对蒸发池的防渗处理和蒸发池面积成本的控制。