公司产品系列
Product range咨询热线:
014-77558505Articles
简要描述:苏州一体化工业污水处理工程诚意合作CBR技术属于生物流化床技术,主要结合了当前比较常见的活性污泥法和生物膜法两种废水处理原理。在进行废水处理时,主要采用的是比重与水接近的生物材料。由于生物填料具有低成本、体积小以及脱碳效果佳的特点,同时对负荷冲击具有较强的抵抗力,因此在废水处理中应用前景广阔。
苏州一体化工业污水处理工程诚意合作
煤气化就是通过程序化的生产流程,对煤炭进行加工,进而将煤炭转化成为气体固体燃料、化学产品,并用于化工产品的生产。由于煤化工废水中所含的污染成分较多,有氨、纷、硫化物等,高达300多种,所以排出的废水含毒性较大。加强对煤化工废水处理成为了环保部门以及相关企业的工作重点。煤气化废水特点:第一,由于煤化工具有复杂的生产工艺,各个环节都会产生污染物并汇集在废水之中,因此煤化工废水之中含有多种污染物。这在一定程度上增加了废水处理的难度,因此需要借助专业化的处理技术来进行废水处理。第二,煤化工废水色度和浊度都较高。主要原因是由于煤化工每个工艺环节都会产生污染物,而这些污染物聚集在废水中会产生各种化学反应,就会产生色度较大的物质。第三,煤化工废水的降解难度大。主要是由于废水中含有大量的不易降解的物质,因此导致废水处理难度进一步增大。
1.2 煤化工废水的来源
煤炭是煤化工生产中的关键性原料,将原煤经过一系列的化学加工后,逐渐转化成为液体、固体的燃料以及化学物品等,最后经过相应的工序和流程将其制作成为具有一定应用价值的化工产品。由这一过程看出,酚和氨是煤化工废水中的主要污染物,同时还有焦油、硫化物、COD等其他污染物。因此,必须要对煤化工废水进行高效处理,否则废水将会对周边土壤、水质以及生态环境造成严重的污染。
2、煤化工废水处理技术分析
煤化工废水中含有较多的污染物,同时废水毒性较大,必须要对其进行专业化的工业处理。目前,常用的废水处理技术有:MMO技术、CBR技术、UASB技术以及SBR技术。
2.1 MMO技术
MO技术属于厌氧氨于氧技术。通常在进行废水处理时,多采用普通活性污泥,能够实现碳、氮脱离。其实质是因普通活性污泥含有微生物,在硝化、反硝化中作用显著。它一直以来就被煤化工企业作为废水处理分解的重要手段之一。在实际的操作过程中,在对废水预处理后,利用MO技术中普通活性污泥进行脱碳、脱氮处理。实验表明,能够有效降低COD浓度至16%,氨氮浓度可降低到0.5%。MMO技术就是对MO技术进行优化升级,加入厌氧处理,能够对污水中一些难以降解的有机物进行分解处理,从而确保废水分解效果得到有效提升。MMO技术主要是将废水中难以降解的有机物转为成为能够进一步分解的链状化学物。
2.2 CBR技术
CBR技术属于生物流化床技术,主要结合了当前比较常见的活性污泥法和生物膜法两种废水处理原理。在进行废水处理时,主要采用的是比重与水接近的生物材料。由于生物填料具有低成本、体积小以及脱碳效果佳的特点,同时对负荷冲击具有较强的抵抗力,因此在废水处理中应用前景广阔。但是,生物填料密度较低,需要操作人员具备娴熟的操作手法和技术,就能够充分发挥出自身在废水污物处理中的功效。在采取CBR技术吹动生物原料时需要借助筛网、风管等设备,只有这样才能进行更深层次的废水处理。
2.3 UASB技术
UASB技术又称之为上流式厌氧污泥床技术。该技术自1997年研发至今一直都被广泛应用。借助该技术进行废水处理时,主要依靠的其厌氧生物处理法,能够对废水中多种有机物进行分解,也可以分离一些液体、固体和气体,不仅能够提高废水处理效果,同时也能够实现资源的再利用。
2.4 SBR技术
SBR技术又被称之为序批式活性污泥技术。该技术是在以往传统的普通活性污泥处理技术的基础上进行改良而成,主要用于一些难以降解的有机物和氨氮污染物。根据《合成氨工业水污染物排放标准》对废水处理标准,SBR技术在利用活性污泥进行废水处理时,能够在废水中产生厌氧和好氧反应,有利于促进废水微生物处理。
3、煤化工废水处理技术及应用分析
3.1 预处理技术
首先需要对煤化工所产生的废水进行预处理,但是由于废水中含有各种有毒物质、高浓度难降解物质等,严重抑制了生物的活性。要想提高废水的可降解性,为生物处理奠定良好的基础,就需要借助物理和化学手段去除煤化工废水中的有毒污染物,比如酚、氨、硫化氢、脂肪酸等。在这一过程中,通常采用隔油、沉淀以及气浮等物化预处理技术。其中隔油处理主要有三种形式:重力分离、旋流分离以及聚结过滤,而重力分离又可细分为平流式、斜管式、平流斜管式以及平行波纹板式等分离方式;气浮法主要有三种方式:溶气气浮、扩散气浮以及电解气浮。如果废水中含有较高浓度的酚或氨,那么还需要通过蒸汽、吸附法或是萃取法等进行回收预处理。
3.2 生化处理
以煤化工废水除油脂所采取的生化技术为例,生化处理主要就是指在去除有机物过程中借助微生物生化作用,进行好氧和厌氧两种处理。处理形式具有多种选择性,常用的生化处理方式有活性污泥、生物膜以及氧化塘等。由于生化处理自身所具备的优势其被广泛应用于国内外煤化工废水处理中,但是生化处理也具有一定的局限性,比如水质变化低,极易产生污泥膨胀现象,同时生化处理效果受废水中含有物质种类以及含量的影响较大。生化处理主要是对已经进行预处理后的废水再次进行深层次的处理,进一步分解和处理掉废水中的有害物质,使其转化成为可再利用的水资源。
氟是人体维持正常生理活动的微量元素之一。适量的氟能促进牙齿和骨骼的钙化,有助于神经兴奋的传导和体内酶的代谢,但人体摄入过量的氟会导致氟中毒、骨质疏松症和关节炎等。世界卫生组织规定饮用水中氟含量的上限为1.5mg/L,我国《生活饮用水水质卫生规范》规定饮用水中氟化物含量的限值为1mg/L,工业废水中氟离子含量应小于10mg/L。电镀、铝电解、半导体、钢铁工业、玻璃制造、磷肥生产、热电厂、萤石选矿、氟化盐和氢氟酸等诸多生产过程中都会排出大量的含氟废水,含量都在100mg/L以上,部分行业氟离子含量甚至高达几千mg/L。因此,必须对含氟废水进行处理,达标后才能向外排放。
苏州一体化工业污水处理工程诚意合作
目前,已有报导的含氟废水除氟方法有化学沉淀法、混凝沉淀法、吸附法、离子交换法、膜过滤法、电化学法和诱导结晶法等。在众多方法中,化学沉淀法、混凝沉淀法、吸附法由于实用性较强备受关注。主要介绍近年来国内这3种方法在除氟方面的研究进展,并指出了今后努力的方向。
1、含氟废水处理方法
1.1 化学沉淀法
化学沉淀法除氟是在含氟废水中加入氯化钙、氢氧化钙和氧化钙等化学物质,使其与氟离子形成氟化钙沉淀以达到除氟的目的。目前该法由于操作简单、投资少、除氟效果明显,普遍适用于大规模高浓度含氟废水的处理。
但氟化钙本身具有一定的溶解性,并且会与氢氧化钙共溶,这常会导致处理后的废水中氟含量仍然有20~30mg/L,很难达到排放标准,同时存在污泥量大、二次污染严重等问题。因此,常需要对废水进行二次处理甚至多次处理才能达到排放的要求。
1.2 混凝沉淀法
混凝沉淀法除氟是应用较多的一种方法,适用于大规模处理废水。其原理是在含氟废水中加入具有混凝效果的混凝剂,然后调节pH到适当值,废水中的氟化物被形成的胶体或沉淀所吸附,从而达到去除氟离子的目的。
絮凝剂可分为有机絮凝剂、无机絮凝剂和微生物絮凝剂3类。其中,铁盐、铝盐属常见的絮凝剂。
郭宇梁等研究发现,对氟化工企业生产中产生的含氟废水采用多级沉淀法处理,分别在二级混凝反应池和三级混凝反应池中加入氯化钙和聚合氯化铝、聚丙烯酰胺,氟离子含量可由处理前的1000mg/L直接达到排放标准。当水中存在氯化钙、硫酸钙时,由于同离子效应导致了脱氟能力的增加。李喜林等以氟化工园区中的含氟废水为研究对象,将聚合氯化铝改性后的粉煤灰和氧化钙作为除氟剂进行吸附和沉淀协同除氟,成功地将废水中的氟离子含量由200~300mg/L降至10mg/L以下。褚衍祥等合成了壳聚糖和丙烯酰胺改性壳聚糖两种有机絮凝剂,并比较了它们的除氟性能。结果显示:在实验室模拟的含氟废水中,丙烯酰胺改性的壳聚糖具有更优的除氟性能,两种絮凝剂的除氟温度均为25℃。肖雪峰等对某太阳能电池生产企业产生的高氟含量废水进行了研究,发现在优化的工艺条件下,F-含量可由未处理前的7456mg/L降至10mg/L以下,达到GB8978—2002中的一级排放标准。优化的工艺条件为:Ca2+投加量为F-量的2倍,混凝沉淀过程pH为8~9,混凝剂聚合氯化铝、助凝剂聚丙烯酰胺的投加量分别为400mg/L和4mg/L。
陈颖以铝盐为改性剂,采用改性后的产絮菌CZJ-15制备了高效可降解、无毒的改性微生物絮凝剂FCZJ-15,并将其用于处理实验室内的模拟含氟废水,研究表明:FCZJ-15不适用于单独进行除氟处理,但适用于和铝盐进行复配再用于除氟。在高氟含量水地区,改性微生物絮凝剂FCZJ-15可使铝盐的使用量降至原使用量的1/2左右。
混凝沉淀法的优点在于混凝沉淀中絮凝剂的投加量少,且可以一次性处理大量的废水,缺点在于该法出水水质不够稳定,产生的污泥量较多导致后续处理比较麻烦。在去除F-的同时又引入了絮凝剂中的有害物质,存在进行二次处理的可能性。
3.3 深度处理技术
煤化工废水在进行生化处理后,出水COD和色度还无法达到排放标准,同时废水中还含有大量的乳化物质,如果此时排放可能会对环境造成污染,因此就需要进行深度处理技术。深度处理技术主要有两种方式,一种是物化处理,另一种是高级氧化法。比如常见的混凝沉淀、吸附法以及膜分离等方法都属于物化处理,并且这些技术已经被广泛应用到了煤化工废水深度处理中。据相关报道显示,利用活性炭吸附和组合膜技术对煤化工废水进行处理后,出水能够达到排放标准。但是物化方法的本质是对污染物进行分离,并不是对污染物进行降解处理,因此如果采用物化方法就需要加强污染物的讲解和回收处理,以免对环境和生态造成二次污染。比如需要进一步对采用吸附处理的活性炭以及采取膜分离过程中所产生的浓缩废水进行再次处理。虽然混凝沉淀法成本低,除污能力强,但是在处理过程中会导致新杂质的产生,因此需要对混凝剂的用量进行严格控制,并加强去杂质处理。