公司产品系列
Product range咨询热线:
014-77558505Articles
简要描述:启东一体化污水处理设备采购必看通过的膜涂层技术,将水体中的盐分进行浓缩、分离,最终形成工业副产盐加以回收利用,SCR系统所产副产盐,纯度高、杂质少、含水率低,优于相关工业副产盐标准。4、SCR工艺应用
启东一体化污水处理设备采购必看
电镀是工业生产与制造过程中的基础产业,普遍应用于电子、五金、机械等需要对产品表面处理的行业,以此达到防腐、耐磨、导电、装饰等基本需求,是产业升级及结构调整过程中的一部分。由于产品的多样性,以及性能要求的差异,电镀生产过程中产生的废水普遍具有以下特点:
(1)污染物种类繁多:在电镀生产过程中,根据镀件的使用功能不同,按照《电镀行业污染物排放标准》(GB21900-2008)的要求,废水中含有石油类、表面活性剂、氨氮、磷、各种重金属及等多种污染因子。
(2)污染物浓度大:由于生产过程中,电镀槽液需要定期更换排放,以及不同形状的镀件会将槽液带出,废水中各种污染因子浓度较高,含盐量普遍在1%左右,如不进行处理,会对周边环境造成很大影响,生态环境急剧恶化。
(3)水质波动大:由于生产的复杂性及镀件需求的变化,废水中的污染因子种类及浓度变化较大。
(4)传统处理工艺复杂:面对各种污染因子,多种重金属混合,传统工艺需要按照污染物不同性质进行单独收集,再进行分类处置。系统至少需要设置多达7~9种预处理系统,再进行综合处理。针对有机物污染,如石油类氨氮、总氮及总磷等,只能采取生物法处理,工艺复杂,运行管理难度较大。
SCR工艺基于物料平衡及资源回收的设计理念,区别于以达标排放为目的传统工艺技术。在传统工艺无法达到稳定达标排放及资源回收的情况下,SCR工艺具有很好的经济效益及环境效益。其主要优点如下:
(1)相对于传统工艺,SCR系统出水水质稳定,满足《电镀污染物排放标准》(GB21900-2008)表三标准。传统工艺由于技术本身的局限性,在水质不断变化的情况下,系统兼容性不够,系统负荷的变化造成出水水质无法稳定达标。
(2)传统工艺在应对水质变化时,通过药剂的种类和使用量的调整来处理废水,造成水系的二次污染和处理成本的急剧增加。
(3)SCR系统通过大量在线传感器来实现系统的自动运行,在水质波动的情况下,可自适应调整相应运行参数,减轻人员工作强度,避免人为失误。同时后台自动记录水质及运行参数,初步实现数据采集和分类,为下一步实现大数据分析及AI智能打下基础,进一步优化系统运行。
(4)关于生产线槽液和浓液,传统工艺无法进行处置利用,只能委托第三方危废单位进行转移、收集和处置,在这一过程中存在多重风险和漏洞,对转移车辆、人员以及处置单位的要求;一旦发生泄漏,环境污染是不可逆过程。SCR工艺可针对不同槽液和浓液,通过酸碱回收、金属回收、盐分浓缩、结晶、分离等工序,对相应槽液作无害化处置,同时实现资源回收。
(5)SCR系统出水水质优于《地表水环境质量标准》(GB3838-2002)Ⅳ类水质标准,可根据车间生产要求100%回用,实现水系的闭路循环;真正做到废水
(6)通过的电积技术,实现金属离子的分类单质化,最大限度地实现重金属在线回收,且没有二次或次生污染。相较于传统工艺通过化学沉淀,形成金属氢氧化物,进行固液分离的方法,无需加药,提高了回收率,且污泥产生量大为减少。
(7)通过的膜涂层技术,将水体中的盐分进行浓缩、分离,最终形成工业副产盐加以回收利用,SCR系统所产副产盐,纯度高、杂质少、含水率低,优于相关工业副产盐标准。4、SCR工艺应用
高盐有机废水主要来源于石油化工、煤化工、精细化工、医药、印染、造纸和农药等生产过程,还有可能包括其他废水处理过程如纳滤、反渗透、电渗析等中产生的浓盐水。目前高盐有机废水主要采用两种处理方式:生物法与非生物法。
生物法主要采用对活性污泥进行逐级盐度驯化使之逐渐适应高盐环境的处理方式。因此培养和驯化出耐盐含量很高的嗜盐微生物以及开发适用于嗜盐微生物的生物反应器是目前研究的热点与重点。在如何提高高盐环境下脱氮、除磷效果以及在盐分波动较大的情况下,系统稳定运行等方面仍面临巨大的挑战。
考虑高浓有机废水中的有机物和无机盐对微生物有抑制生长或毒害作用,并且并非所有的有机物都能生物降解。所以非生物在处理高盐有机废水有一定优势。
当处理高盐废水时,蒸发法是地方法将盐分分离出来,可采用的蒸发形式包括多效蒸发和机械蒸汽再压缩蒸发工艺。但是当高盐废水中含有有机物时,势必对蒸发产生影响,这就考虑蒸发技术在整个高盐有机废水处理中的工艺组合方式。本文主要总结了蒸发技术与废盐资源化、废液焚烧、高级氧化、物化分离、分盐处理等技术组合来处理高盐有机废水。
1、蒸发+后处理技术
1.1 蒸发结晶+废盐资源化
当蒸发结晶技术直接用于高盐有机废水时,结晶出来的废盐含有一定量的有机物,需要按危废处理。国内废盐的处理方式一般为填埋处理,但此方法占用大量场地,而且还会对地下水资源和生态系统造成破坏;焚烧是一种可行的废盐处理技术,但焚烧过程中可能会存在无机盐熔融的问题,导致高温耐火材料无法使用,且产生的烟气内可能夹带熔融的无机盐会在后面的处理设备中冷却结晶,对后续设备运行造成影响。
废盐资源化是通过炭化深度去除有机物实现盐的无害化,再进一步开展资源化利用。炭化深度去除有机物的方法是热解。热解是一种在缺氧或无氧条件下的燃烧过程,是在低电极电位还原条件下的吸热分解反应,也称为干馏或炭化过程(煤气工程及焦化就是热解过程)。热解比焚烧的优点是,可以将废盐中的有机物转化为燃料气、燃料油等储存性能源;废盐中的硫、重金属等有害成分大部分被固定在炭黑中;而且缺氧分解下,排气量少,NOx的产生量也少,有利于减轻对大气环境的二次污染。
热解产物的产量及成分与热解原料成分、热解温度、加热速率和反应时间等参数有关。温度是热解过程最重要的控制参数。在较低温度下,有机大分子裂解成较多的中小分子,油类含量较多;温度升高,中间产物发生二次裂解,C5以下分子及H2成分较多,气体产量成正比增长,各种酸、焦油、炭渣减少。另外,加热速率较低时热解产品气体含量高;提高加热速率,则产品中的水分及有机物液体的含量逐渐增多。反应时间长,转化率高,但处理能力降低,故应综合考虑。
热解方式的供热方式有两种,第一种是外部供给热解所需能量,热效率低;第二种内加热,通过供给适量空气使可燃物部分燃烧提供能量,热效率高,得到普遍应用。按热解炉的结构分为:流化床、回转窑、多段炉三种。废盐热解后,再经过除碳,就可以资源化利用,比如作为工业用盐(如建材添加剂)的生产原料,或者通过重结晶方式,得到所需要的盐类。
启东一体化污水处理设备采购必看
1.2 蒸发浓缩+废液焚烧
焚烧法是一种使有机废液实现减量化、无害化和资源化的处理技术。高盐有机废水的焚烧是将所有可燃或需要助燃的有机废液和废渣,在高温条件下,分解成无毒、无害的CO2、水等小分子物质,有机氮化物、有机硫化物、有机氯化物等被氧化成SOx、NOx、ClO-等酸性物质,但可以通过尾气吸收塔等净化处理,净化后的气体能够满足《大气污染物综合排放标准》。同时焚烧产生的热量可以回收或供热。
当高盐有机废水中的COD含量越高,其热值就越高,当废水焚烧时所外加的燃料就越少。假设烟气出口180℃,余热利用率65%时,当废水中COD为350g/kg时,就可以不用外加燃料。
在蒸发过程中,有机物浓度过高容易引起蒸发装置产生较多的泡沫,导致飞料产生,可投加消泡剂,稳定运行参数,避免飞料。
根据废液焚烧炉的炉体特征,应用泛的废液焚烧炉可分为液体喷射型、流动床和回转窑三类。
2、预处理+蒸发结晶
2.1 高级氧化+蒸发结晶
采用高级氧化技术,将高盐有机废水中的有机物通过氧化将其氧化成二氧化碳和水或其它小分子化合物,接着再通过蒸发结晶技术将盐分分离出来。常用的高级氧化技术有湿式氧化、超临界水氧化、芬顿氧化等技术。
湿式氧化是在高温(150~350℃)高压(0.5~20MPa)的条件下,利用空气或氧气等作为氧化剂,将废水中的有机物氧化分解为无机物或小分子有机物的过程。为降低氧化反应的温度和压力,又有催化湿式氧化技术,包括同相催化湿式氧化和异相催化湿式氧化。
超临界水氧化是在超临界水中溶解的氧气与有机污染物发生化学反应,在超临界水氧化过程中,有机物、空气(或氧气)和水在24MPa左右的压力和400℃以上的温度混合,可以成为均一相,在这种条件下,有机物自发开始氧化反应,在绝热条件下,所产生的反应温度进一步提高,在一定的反应时间内,使99.9%以上的有机物被迅速氧化成简单的无毒小分子化合物,碳氢化合物被氧化成为CO2和水,含氮元素的有机物生成N2等无害物质,氯、硫等元素也被氧化,以无机盐的形式从超临界流体中沉积下来,超临界流体中的水成为清洁水。
芬顿试剂法是由芬顿试剂Fe2+和H2O2组成的混合体系,通过催化分解H2O2产生HO•来攻击有机物分子夺取氢,将大分子有机物降解成小分子有机物或CO2和H2O,或无机物。
2.2 物化分离+蒸发结晶
物化分离法是采用物理化学的方法将高盐有机废水中有机污染物从水中分离出来,不消耗过多的能量破坏其化学结构,主要方法有膜分离、萃取法、蒸馏法和吸附法等。
膜分离法是利用特殊的半透膜将废水分开,进而使某些溶质或水渗透出来的方法。对于高盐有机废水,常用反渗透和纳滤方式使其进一步浓缩,减少蒸发结晶的处理量。但有机物会对反渗透和纳滤膜造成有机物污染或生物污染,导致膜频繁清洗,降低在线率,膜寿命大大下降。对于高盐有机废水的膜浓缩的浓缩倍率,应对不同的浓缩倍率做投资和运行费用的运行的比较。随着浓缩倍率的提高,单位投资和运行成本快速上升,综合经济性接近热法工艺时,不宜继续采取膜浓缩。
萃取法是向高盐有机废水中加入适当的溶剂-萃取剂,作为有机废物的良好溶剂,使有机废物从高盐有机废水中分离出来的过程,萃取剂可在萃取过程中循环使用。例如用表面活性剂配置的乳化液系统可以萃取高浓度的含酚废水,并可以回收
蒸馏是利用高盐有机废水中各组分物质间挥发度的差异,将有机污染物从废水中分离出来。精馏塔是精馏装置的主要设备,分离过程主要是在精馏塔内进行的。塔内装有若干块塔板或一定高度的填料。
吸附法主要用于难降解或难于氧化的溶解性有机物,如卤素、硝基取代的芳烃化合物、杂环化合物等,吸附剂以活性炭较为常见。当吸附过程达到平衡后,必须对其进行脱附再生,使其重复利用。通过加热可使吸附的有机物在高温下氧化和分解。