公司产品系列
Product range咨询热线:
014-77558505Articles
简要描述:常州苯胺类废水处理设备一体化污水净化设施对不同种类的废水,芬顿试剂的投加量、氧化效果是不同的。因为不同类型的废水中,其有机物的种类是不同的。对于醇类(甘油)及糖类等碳水化合物,在羟基自由基作用下,分子发生脱氢反应,然后产生C-C键的断链;对于大分子的糖类,羟基自由基使糖分子链中的糖苷键发生断裂,降解生成小分子物质;对于水溶性的高分子及乙烯化合物,羟基自由基使得C-C键断裂;并且羟基自由基可以使得芳
常州苯胺类废水处理设备一体化污水净化设施
苯胺呈碱性,与酸易生成盐。其氨基上的氢原子可被烃基或酰基取代,生成二级或三级苯胺及酰基苯胺。当苯胺进行取代反应时,主要生成邻、对位取代产物。苯胺与亚硝酸反应生成重氮盐,由此盐可制成一系列苯的衍生物和偶氮化合物;苯胺类物质属于有毒污染物,毒性比较高,仅少量就能引起中毒。主要是通过皮肤、呼吸道和消化道进入人体,从而破坏血液造成溶血性贫血,损害肝脏引起中毒性肝炎,甚至导致各种癌症。属于环境中严格控制排放物质。因此,如何有效的降低废水中的苯胺排放浓度对环境和人身安全尤其重要。
苯胺废水不易处理,主要体现在以下几个方面:
1、苯胺毒性高,难生物降解,致使生物处理系统难以稳定运行且效率较低。
2、化工行业所产生的苯胺废水中苯胺浓度可达数千,而我国规定的污水排放标准中苯胺类物质的zui高允许排放浓度为2.0mg/L。
3、高盐含量苯胺废水含有较多NaCl、Na2SO4等无机盐,浓度可达50%~65%。
4、苯胺类废水具有很强的酸性或碱性,不仅增加废水处理费用,且加大废水中盐含量。
5、苯胺废水色深,胺基等活泼基团易发生反应,增强废水色度。
目前,国内外对苯胺废水的处理已做了较多的研究,治理方法也种类繁多。
(1)物理法:主要为吸附法、萃取法和膜分离法等。吸附法常用吸附材料为合成树脂、天然矿物岩石、活性炭等;萃取法一般使用有机萃取剂对水中的苯胺进行萃取、分离,常用萃取剂为同系物。物理法一般用于生产工段的回收,常用于处理高浓度废水,低浓度废水处理效果较差,且萃取法还易造成二次污染;液膜法处理苯胺废水工艺过程较复杂,且乳状液膜需制乳、破乳等工序,分离过程中的乳液溶胀和破裂限制了内相浓缩液浓度的进一步提高,且基建投资和运转费用较高,需要定期的化学清理,并且其浓缩废水处理较为困难。
⑵生物法:生物法对苯胺类物质的处理一般为培养耐药微生物,利用微生物的生长行为对污染物进行分解。但是,苯类物质一般含对微生物伤害大,微生物难成活,处理效果较差。且苯胺难以降解,生物技术处理苯胺废水存在很多限制;尤其化工行业产生的高盐废水中高盐更是对微生物有致命的伤害,因此,微生物法也不适用于此类污水。
⑶化学法:化学法一般分为光催化氧化法、电化学法和强氧化法;光催化氧化法对处理对象水质要求较高,一般用于低浓度有机物的处理,且很少单独使用,且耗能大成本偏高;电化学法对苯系物处理效果较差,不易打破苯环结构;强氧化法是目前采用较多,较成熟的一种难降解有机物处理方法。常用氧化剂包括臭氧、次氯酸钠、双氧水、Fenton试剂等。
苯胺是一种重要的有机化工原料、精细化工中间体,由其制得的化工产品和中间体有300余种,在农业、医药、染料化工等领域均应用广泛。目前苯胺的生产工艺路线主要是硝基苯催化加氢法,生产和使用苯胺类产品的工厂都会排放不同浓度的苯胺废水。含苯胺废水来源广、污染危害大,其毒性不仅危害农业生产、动植物生长繁殖,而且也威胁着人类健康。苯胺对环境的污染,已经逐渐引起了人们的关注。
目前国内外对苯胺废水的处理主要有物理、化学、生物等方法。
物理方法主要有吸附法、萃取法、蒸馏法;化学方法主要有光催化氧化法、超临界水氧化法、二氧化氯氧化法、超声波降解法等。
吸附法、化学法等目前对苯胺装置苯胺废水初步回收处理尚不能应用;萃取法因引入了杂质需要对萃取剂进行回收处理;蒸馏方法消耗大量蒸汽,而且需要对塔釜液进一步进行处理不是方法对于苯胺废水。
目前采用的生物处理方法,虽然技术成熟且成本较低,但由于苯胺毒性高,难生物降解,致使生物处理系统难以稳定运行且效率低下。采用经济有效的预处理方法,提高废水的可生化性,是解决苯胺废水处理难题的关键。
目前,酚类废水的处理一般遵循三种思路。
第一,采用多种方法降解水体中的以使其浓度降低至符合国家标准,从而实现无害化排放。这种思路一般是针对酚类物质浓度较低的废水。
第二,将酚类物质从废水中提取出来,对其进行回收再利用。这种思路一般是针对酚类物质浓度较高的废水。
第三,在产生酚类物质的生产过程中添加其他工艺,直接将含有酚类物质的废水循环利用,从而实现含酚废水的
基于酚类废水处理的三种思路,对于高浓度的酚类废水,通常先对酚类物质进行提取回收,然后再进行处理;对于低浓度的酚类废水,可以先进行浓缩或富集使酚类物质浓度升高,然后进行提取回收再进行处理;对于浓度非常小没有回收价值的废水,可以使用生物处理法、物理法或化学法进行处理。
01,芬顿氧化法进水应符合以下条件
(1)在酸性条件下易产生有毒有害气体的污染物(如硫离子、氰根离子等)不应进入芬顿氧化工艺单元;
(2)进水中悬浮物含量宜<200mg/ L;
(3)应控制进水中 Cl-、H2PO3-、HC03-、油类和其他影响芬顿氧化反应的无机离子或污染物浓度,其限制浓度应根据试验结果确定。
常州苯胺类废水处理设备一体化污水净化设施
02,芬顿氧化法进水不符合条件时
应根据进水水质采取相应的预处理措施:
(1)芬顿氧化法用于生化处理预处理时,可设置粗、细格栅、沉砂池、沉淀池或混凝沉淀池,去除漂浮物、砂砾和悬浮物等易去除污染物;芬顿氧化法用于废水深度处理时,宜设置混凝沉淀或过滤工序进行预处理;
(2)进水中溶解性磷酸盐浓度过高时,宜投加熟石灰,通过混凝沉淀去除部分溶解性磷酸盐;
(3)进水中含油类时,宜设置隔油池除油;
(4)进水中含硫离子时,应采取化学沉淀或化学氧化法去除;进水中含氰离子时,应采取化学氧化法去除;
(5)进水中含有其他影响芬顿氧化反应的物质时,应根据水质采取相应的去除措施,以消除对芬顿氧化反应的影响。芬顿氧化法用于生化处理的预处理时,若进水水质水量变化较大,芬顿氧化工艺前应设置调节池。芬顿的影响因素
温度
温度是芬顿反应的重要影响因素之一。一般化学反应随着温度的升高会加快反应速度,芬顿反应也不例外,温度升高会加快OH·的生成速度,有助于OH·与有机物反应,提高氧化效果和COD的去除率。但对于芬顿试剂这样复杂的反应体系来说,温度升高不仅会加速正反应的进行,也加速副反应,同时会加速H2O2的分解,而分解得到的02和H20,不利于OH·的生成。不同种类工业废水中的芬顿反应,其适合的温度,也存在一定差异。处理聚丙烯酰胺水溶液时,温度应控制在30℃至50℃;洗胶废水处理时温度为85℃;处理三氯(苯)酚时,当温度低于60℃时, 有助于反应的进行,当高于60℃时,则不利于反应。
pH值
一般来说,芬顿试剂是在酸性条件下发生反应的,在中性和碱性的环境中,Fe2+不能催化氧化H202 产生OH·,而且会产生氢氧化铁沉淀,从而失去催化能力;当溶液中的H+浓度过高,Fe3+不能顺利的被还原为Fe2+ ,催化反应受阻。多项研究结果表明芬顿试剂在酸性条件下,特别是pH在3—5 时氧化能力很强,此时有机物降解速率快,能够在短短几分钟内降解,有机物的反应速率常数正比于Fe2+和过氧化氢的初始浓度。因此,在工程上采用芬顿工艺时,建议将废水调节到2—4,理论上pH值在3—5时为最佳。
有机物
对不同种类的废水,芬顿试剂的投加量、氧化效果是不同的。因为不同类型的废水中,其有机物的种类是不同的。对于醇类(甘油)及糖类等碳水化合物,在羟基自由基作用下,分子发生脱氢反应,然后产生C-C键的断链;对于大分子的糖类,羟基自由基使糖分子链中的糖苷键发生断裂,降解生成小分子物质;对于水溶性的高分子及乙烯化合物,羟基自由基使得C-C键断裂;并且羟基自由基可以使得芳香族化合物开环,形成脂肪类化合物,从而消除降低该种类废水的生物毒性,改善其可生化性。
针对染料类,羟基自由基可以打开染料中官能团的不饱和键,使染料氧化分解,达到脱色和降低COD的目的。用芬顿试剂降解壳聚糖的实验表明,当介质pH值在3—5时,聚糖、H202及催化剂的摩尔比在240:1—2 或24:1—2时,芬顿反应可以使壳聚糖分子链中的糖苷键发生断裂,从而生成小分子的产物。
过氧化氢与催化剂投加量
芬顿工艺在处理废水时需要判断药剂投加量及经济性。H202的投加量大,废水COD 的去除率会有所提高,但是当H202投加量增加到一定程度后,COD的去除率会慢慢下降。因为在芬顿反应中,H202投加量增加,OH·的产量就会随之增加,而COD的去除率会相应降低。但是当H2O2的浓度过高时,双氧水会发生分解,并不产生羟基自由基。