公司产品系列
Product range咨询热线:
014-77558505Articles
简要描述:六安市含氟污水处理设备活废水治理离子交换技术已在钨冶炼中得到广泛应用。钨冶炼中是用强碱性阴离子交换树脂将粗钨酸钠溶液净化除杂并转型成钨酸铵溶液,其工艺过程包括磨矿、碱分解、交换、蒸发结晶、干燥包装。本工艺可同时完成净化除砷、磷、硅、锡等杂质并将钨酸钠转型成钨酸铵,杂质分离主要是基于水溶液中各种阴离子对强碱性阴离子交换树脂的亲和力不同,达到离子分离并进入交后废水中。
六安市含氟污水处理设备活废水治理
实验结果:当pH值被调整至7左右的时候,铁盐除砷的;当溶液偏碱性时,根与铁结合的沉淀溶解,砷重新返溶到溶液中;当溶液偏酸性时,根不与铁结合。从不同铁盐的除砷效果对比看来,三价铁盐效果优于二价铁盐,当溶液pH值被控制在7~8之间时,三价铁盐的除砷率均达到95%以上,能达到排放标准的0.5mg/l以下,且三价铁盐中,氯化铁在水溶液中的溶解性优于硫酸铁。
(2)溶液pH值对氨氮去除效果的影响。实验方法:取之前经过氯化铁沉淀后的废水5份,分别加入相同量的含有效氯11%左右的次氯酸钠,按1mg氨氮投加0.085ml次氯酸钠,使用氢氧化钠和盐酸调节pH值,将实验废水的pH值分别调节为4、6、8、10、12。
实验结果:氨氮的去除率与pH值成反比,即溶液pH值越低,废水中氨氮的去除效果就越好。
3、钨冶炼过程节水方案
在发电过程中产生的以二氧化硫为主的各种污染物也给环境带来了严重的负担。探讨燃煤电厂脱硫废水处理工艺是为了从根本上解决火电厂的污染物排放问题,该项工作的开展对电力行业的健康发展具有深远意义。
2、燃煤电厂脱硫废水概述
2.1 脱硫废水的产生途径
从近几年的电厂现状来看,各大燃煤电厂都在不遗余力地进行技术探寻,但是并没有找到行之有效的解决方法,如今仍旧沿袭传统的工艺即石灰石—石膏湿法。该种脱硫方法十分的简单,其主要是在煤炭燃烧炉内对烟气中的二氧化硫进行处理,这种工艺与其他工艺相比有着良好的效果,但是不足之处是处理过程中会产生大量的废水,并且具有多种重金属,因此也会产生了二次污染,这就是脱硫废水的来源。
2.2 脱硫废水的特点
首先,脱硫废水的腐蚀性非常强。在一般情况下,该种废水中含有大量的强酸弱碱盐和工业废酸,虽然浓度不是很大,但是这使得其具有很强的腐蚀性。这些酸性物质不但会对环境造成严重的影响,而且对电厂的机械设备也会造成严重的损伤;其次,脱硫废水含盐量也比较高,受废液中的化学制剂影响,尤其是废液中存在的大量强酸弱碱盐,对该工艺的影响较大。就电厂数据统计得知,电厂废水中含盐量在每升三万毫克上,这与其他废水相比已经是非常可观的一个数值;最后,脱硫废水的硬度比较高,非常容易结垢。工业脱硫废水中含有大量的游离状态的钙离子和镁离子,它们非常的不稳定,尤其是对温度比较敏感,当温度上升时,这些钙镁离子就会产生结晶,也就是结垢。同时,这些高含量的钙镁离子使得脱硫废水具有较强地硬度,它们会对电厂设备以及脱硫设备都会产生严重的损害。
3、燃煤电厂脱硫废水处理工艺探讨
3.1 高效反渗透技术
所谓的高效反渗透技术是借助一些特殊的反渗透浓盐水对废水进行处理的技术,该种技术主要是在传统的技术上进行改进,巧借化学反应中离子交换原理、硅离子不会被反渗透模反应以及有机物在较高的PH下会发生皂化反应的原理,经过升级之后的高效反渗透技术可以高效去除脱硫废水中的各种有机污染物、盐类化学物以及多种结垢物质。但是该种技术通常需要借助一些特殊的反渗透浓盐水,而且中间的过程比较冗杂,因此工艺的实用性还有待提升。目前行业的处理方式是,预处理与膜浓缩综合共同进行,实际的操作过程是采用多种经济的方法将浓盐水进一步浓缩,直到使得废水的TDS质量浓度达到50000~800-5775585mg/L范围以内。通过该种做法最大限度的减小后续蒸发器的规模,以此来降低前期资金的投入,并有效地提升该种工艺的经济性和节约性。
3.2 高级氧化技术
伴随着电厂废水复杂程度的不断提升,尤其是其中有机物复杂程度的不断增加,再加上环保要求的不断提升,在这种形势下,高级氧化技术得到了有效的发展。之后也有许多新型的氧化技术不断地被应用于高级氧化技术中,使得氧化技术更加的理想。其中最新的氧化技术有:光化学氧化法、臭氧氧化法、催化湿化氧化法、Fenton法等,这种高级氧化技术是利用特殊氧化剂制备具有高级养花性能的羟基自由基,这种羟基自由基可以将废水中各种有机物进行降解,从而达到净化水质的目的。
3.3 多功效结晶蒸发
该种处理工艺与前两者相近,都需要前期对废水进行一定的预处理,之后在进行综合的处理。多功效蒸发工艺主要分四大板块,具体的细节如下:经过预处理之后的废水仍旧处于高温状态,此时可以将其直接送入多功效蒸发系统;待渐热完成之后,可以将其加入岩浆桶;之后废水会被送入盐旋流器进行结晶,废水中析出的结晶会被离心机分离出来;最后被传输到干燥床上进行干燥
达500×10-6~1000×10-6,远远超过国家排放标准。高价钒、铬化合物作为重度污染物,如外排或泄漏,会对水体、土壤环境造成极大污染,严重危及人体健康,同时造成金属资源的浪费。
目前,处理该种废水较为有效的方法有:
(1)还原中和沉淀法,向沉钒废水中加入还原剂(如焦亚硫酸钠、亚硫酸氢钠等),使五价钒、六价铬离子全部还原为三价,再向还原后的废水溶液中加入碱液,中和废水溶液同时使铬、钒离子形成水合物从废水溶液中沉淀出来。该方法设备简单、处理量较大,但存在钒铬回收率低、沉淀废渣无法直接回收钒铬有价元素、药剂加入量精确操控难度大、药剂消耗量大、处理周期长、处理成本较高等缺陷。
(2)常规离子交换法,即使用离子交换树脂回收提钒废水中的阴离子组分,回收提钒废水中的钒、铬。该方法工艺路线简单、钒铬吸附率较高,但仍存在许多难以回避的缺陷。含有钒、铬的解析液富集液采用传统的铵沉工艺:即铵盐沉钒、过滤、滤饼煅烧可得纯度为99.8%的V2O5产品。沉钒上清液经还原、中和沉铬、过滤、来处理,该过程不仅重新带来了氨氮废水,并且不能实现铬的资源化利用。
六安市含氟污水处理设备活废水治理
离子交换钨冶炼生产过程中的废水量是通过具体的生产工艺来进行决定的,因此我们可以改进生产工艺来减少排放,主要有以下几个重要的方面。
(1)使生产主要过程中少用水。这个方法较难解决,我们需要从根本上对冶炼企业的生产工艺来进行改进,通过原材料以及冶炼企业设备的改进来的让用水量减少,对磨矿加水体积严格按照工艺要求执行,在保证树脂吸附能力的要求下严格控制交前液的钨度减少废水的产生。
(2)使生产洗涤过程中少用水。在生产过程中,为了保证产品仲钨酸铵的质量,我们需要对吸附钨的交换树脂和产品洗涤来将杂质除去,这是一个非常费水的过程,我们需要对其进行改进,能够使其降低成本。
(3)通过对冷却用水的管理来节水。钨冶炼过程中由于要满足工艺上的要求,需要采用冷却水来进行降温与冷却,但是这种水源除了容易受到热污染与辐射污染方面,水的质量还是比较好的,因此我们可以对其进行重复利用,冷却水是工业节水的重要考虑因素,具体的措施主要有以下几种:
①改直流式用水系统为循环用水系统。
②选高效节能和性能优良的冷却构筑物。
③控制循环水水质循环水的主要控制指标为其污垢与化学元素的含量,我们需要将其存在的微生物进行杀死,然后把浓缩倍数进行控制,同时防止其对设备产生腐蚀,但是这种水不能投入到生活当中。
(4)生产废水的循环利用。
由于工业用水的标准是不一样的,因此,我们可以把一些环节中不需要的废水,来作为另一环节里面可以使用的水,从而来实现水资源节约的目的,如:纯水洗柱水用来粗钨酸钠洗涤及离子交换柱一次洗涤;离子交后废水用来反洗离子交换柱;压滤机洗涤进行逆流洗涤回用。在工业生产当中,作为冷却水利用时,要对其成分进行检查,如果其钙镁离子比较多的话,可能会影响设备的运行,因为